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ABSTRACT

In seeking to solve an unconstrained minimization problem, one often

computes steps based on a quadratic approximation q to the objective func-

tion. A reasonable way to choose such steps is by minimizing q constrained

to a neighborhood of the current iterate. This paper considers ellipsoidal

neighborhoods and presents a new way to handle certain computational de-

tails when the Hessian of q is indefinite, paying particular attention

to a special case which may then arise. The proposed step computing algo-

rithm provides an attractive way to deal with negative curvature. Imple-

mentations of this algorithm have proved very satisfactory in the nonlinear

least—squares solver NL2SOL.

AMS(MOS) Subject Classifications: 90C30, 651~ 5

Key Words: Unconstrained optimization, negative curvature

Work Unit Number 5 — Mathematical Programming and Operations Research

1 Presented at the Tenth International Sympsoium on Mathematical Programming ,
i~1ontrea1, Canada, 27—31 August 1979.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
This material is based upon work supported by the National Science
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~ ~~~~~~~~ ~.1 ~~~~~ *~~ r~’ d 1
~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- , -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~
--
~~
. .—--...--.--—..—.-—----- - —

SIGNIFIC NCE AND EXPLANATION

Unconstrained minimization problems arise in many contexts. Thus,

given an objective function ~ : R~ -s~ IR , one often must seek a point x

which minimizes ~p Cx). It is usually necessary to resort to some itera—

tive procedure : one computes a sequence of iterates x1
, x2

, ... which,
if all goes well , converges to x~. Given the current iterate x x~~ —

one commonly uses a quadratic approximation q to ip in computing the new

iterate x~ = X
k+i~ 

Since q may only be accurate on a neighborhood

N of x, one appealing way to compute x~ is by minimizing q on a

specified N. This paper deals with ellipsoidal neighborhoods N and

presents a new way to handle certain computational details when the Hessian

of q is indefinite (i.e., not positive definite). The resulting algorithm

provides an attractive way to compute x even when q is not convex. Modules

implementing this algorithm give very satisfactory performance in the non—linear

least—squares solver NL2SOL.

The resp ons ib i l i ty  for the wording and views expressed in this descriptive
summary l ies wi th  MRC , and not with the author of this report.
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COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS1

David M. Gay

1. Introduction

Many unconstrained minimization algori ;hms employ a sequence of quadratic

approximations 
~~~

. : IR -
~~ R , i = 0,1,2,... to the objective function

+ R .  Using them, they determine a sequence x
0
, x

1
, x

2
,... of points

which (usually) are ever better approximations to a local minimizer x~ of ~~~~~~
.

Given the current iterate x = x. and quadratic model ~ = P ,  these algorithms

usually compute the next iterate x~ = x~~1 
in one of two ways. Either they

determine a Newton step s such that ~ (x + x) is minimized, then set

* *
x~ = x + As , where A > 0 is chosen so that ~ (x + As) <p (x), or they

choose a neighborhood N = N. of 0 and a point s*CN which minimizes p (x + s)

over seN , and they ’set x~ = x + S , having taken care in choosing N that

+ ~ *) < ~*(x) Algorithms of the latter sort have an intuitive appeal:

~ often approximates ~~ well only in a neighborhood of x, and these algo-

rithms attempt to achieve the maximum function reduction possible on an edu-

cated guess at such a neighborhood. This paper concerns itself with choosing

s~’ in this sort of algorithm , given x and an N of the reasonable form

*described below. Since we can expect the quadratic approximation ~ to ip

only to be accurate in a neighborhood x + N of the current iterate x, we

shall refer to a point s~ that minimizes ~ (x + s) subject to scN as an

otpimal locally constrained (OLC) step.

Suppose now that we have gc]R n and a symmetric nxn matrix H f l k~~
n

* T l Tsuch that W (x + s) ~ Cx) + g s + s Hs. (We regard vectors as column

vector and use superscript T for “ transpose” . Superscript —T means

“inverse transpose”. Of course, we have in mind that g VP*(x) and

1 Presented at the Tenth International Symposium on Mathematical Programming,
Montreal, Canada, 27—31 August 1979.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material
• is based upon work supported by the National Science Pouncation under Grant Nos.

MCS7R—09525 and MCS76-00324. ——



H V~~*(x) in a suitable sense. We lose no generality in assuming x = 0

*and P Cx) = 0, so that

j (1.1) ‘P (s) = g
T5 ÷ I sTHs.

For the rest of this paper we assume that N has the form

(1.2) N = {y rj k n : U Dyll ~ .5)

where fl~~~nxn is nonsingular, 11 11 denotes the Euclidean norm II
~
lI
2

(i.e., Ilyll = (~T~)l/2) and 5 >0. Some of the algebra below is simpler

if D is the identity matrix I. It is possible, in effect, to arrange this

by a change of variables. Let

— -T(l .3a) g = D g

(l .3b) H = D T
HD

1,

(l .3c)  = : IyII~~ ts } ,

— -  -‘r-- 1 —‘r~---•3d)  p (s) = g s + s Hs.

If

( l .~~e) 5 = Ds ,

then p ( s )  = p(s) and sEN if and only if SEN , so in proofs we may just as

well deal with p and N , for which D = I , as with .p and N Therefore we

~~
sume without loss of generality in the proofs below that D I . It is

often useful in practice to choose D # I , e.g.  to reflect scale in the a

—2—
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components of s, so we leave D in the statements of some results.

Some of the proofs below are simpler if H is a diagonal matrix.

We may assume this without losing generality, because we can also arrange for

it, in effect, by changing variables. Specifically, since H is symmetric,

there exists an orthogonal matrix VcR ’~’°~ such that ii = VHVT is diagonal

— _

with nonincreasing diagonal elements. Thus if g = Vg, ~ (s) = g s + S Us

and s = Vs, then .p(
~) = ip(s) and sEN if and only if SEN.

In many applications H is positive definite. In others, however, H

may have one or more nonpositive eigenvalues. This may happen, for instance,

when H comes from the “augmented model” in the NL2SOL algorithm [DenGW79J .

We therefore consider the general case where H may be indefinite. The scheme

we are discussing thus provides an appealing way to deal with negative curvature.

In the next section we show that an OLC step s~ satisfies

(H + aD
TD ) s  = -g for some ~ ~~

‘ 0 such that H + eD
TD is positive semidefinite.

Our treatment differs from that of Goldfeld, Quandt, and Trotter [Go1QT66) in

that we consider the special case where H + ~D
TD is (nearly) singular. This

case requires special handling, which we discuss in §3. In §4 we give a com-

plete algorithm for computing s~ , and we discuss numerical experience with it

in the context of NL2SOL in §s.

The present work builds on that of many others. Among the first papers

to consider computing an OLC step was that of Marquardt [Mar63], in which p~

was a nonlinear sum of squares. (The paper of Levenberg [Lev44) that is often

mentioned in the same breath actually considers a somewhat different step , one

that minimizes p (x + s) + IIDSII 2 ~ Goldfeld , Quandt, and Trotter considered

* Ta general p but restricted themselves to the case where H + a D D is posi—

Live de f in i t e .  Hebde n [Heb73 ) gave an interesting algorithm that computes a

3
a
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good approximation to s~ when H +aDTD is sufficiently positive definite and

that otherwise computes what often would be a reasonable step. More [Mor78J

refined Hebden’s scheme and specialized it to a good algorithm for the case

where ~~~ is a sum of squares. The algorithm we give in §4 incorporate More’s

ref inements of Hebden’s scheme along with a new, often more reasonable way to

handle the case of a (nearly) singular H +aDTD. When specialized to least-

squares problems, the new algorithm computes the same step as does More’s, but

may expend less work in the special case.
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2. characterizing 8*

The following characterization of an OLC step s~ lies at the heart of the

algorithm in §4 for approximating 5* •

Theorem 2.1 If p and N are given by (1.1) and (1.2) , then s*CN minimizes

.p(s) over SEN if and only if there exists e~ ~~O such that H + G*D
TD is

positive semidefinite and

(2.1) (H + ~*D
TD)s* =

with II Ds*II = 6 if a* > 0. If g ~ 0 or H has a negative eigenvalue, then

Ct~ is unique.

Proof: Without loss of generality, D = I, (2.1) has the form

(2.2) (H + a*I)s* =

and H = diag(h1,...,
h), with h1 ~‘h 2 >

If g = g1,. ,q~ ) T has g. = 0 for i < n , then the theorem is easily

seen to hold , so assume g. ~ 0 for at least one i < n.

(Only if): Suppose s* minimizes ~ over N. By the second—order

necessary conditions in Theorem 4 of (McC76] there exists ~ ~ 0 such that

(2.2) holds and either a* = 0,11 s*II ‘(ô,and H is positive semidefinite, or

else a~ > 0, IIs *II = 6, and

(2.3) Y
T(H + a*I)y ) 0 for all ye]R n with y’~s1~ = 0.

The “only if ”  assertion thus holds if a* 0, so assume a*  > 0. In this case,

( 2 . 3 )  implies that H + a*I has at most one negative eigenvalue, so h1
) -a~

for i < n and we must show that h )‘ _ a *. This is clearly so if h = h
n n n-i

• — 5—
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so assume h < h . For CL > ct~~, define s (a) r ]R5 by
n n-i

0 if h . + Ct = h . + cz~ = 0 with i < fl;
1 1.

s.(a) = —g~/(h. + a) if i < n and h. + a >  0;

• ~ 2 2 1/2—sign (g ) L6 — 
~~ (s.(&) ] 

if i. = n.
j<n

If h . + cz~ = 0 with i <n , then (2.2) implies g. = 0, 50 it is reasonable to set

s. (ci*) = 0 in this case. Indeed, since s~ minimizes p on N , it is readily verified

that s~ = 0 if h . + a~ = 0 and then that s~ = s(Ct*), provided that sign (g~)

is properly chosen when g = 0. Let ~‘(c~
) = .p (s(ct)). Then ‘P (a*) = ~ (s e). Now

if h + ct~ were negative, then there would clearly exist - hn > a~ such

that (2.2) held with s~ replaced by 5* = s(a # ) .  But ls # I I  = .5 and it is

easily verified that ‘ P ’ ( c t )  < 0 for ~~~~~~~~ 
< a#, so s* would be a point in

N wi th ~~(s # ) < ~(s *) .  This inequality (which also follows from Theorem 7.1

of [Gan7B])would contradict the choice of s*. Thus h + a~ must be nonnegative

and H + a*I is positive semidefinite.

(If): Since N is compact, there exist an s* and a~ of the sort

~ considered. To complete the proof, we study the extent to which they are

det rinined by (2.2). Therefore we now redefine s:[0,oo)-.. R
n to be an arbi—

tra~ function such that

( 2 . 4 ) (H + aI)s(a) = —g.

L~et. k be such that h . > h f or i < k and h . = h for i 
~ k , and for

= ~~~~~~~~~~~T let P y =

n 

~~~~~~~~~~~~~~~~~ . F:r a >  —h ,

- -(H + ~T)
1
g is uniquely determined by (2.4) and 

~) 5(a) decreases

strictly monotonically. On the other hand , if a = - h , then (2.4) can hold

—6—
- a  
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only if Pg = 0, in which case there are many choices for s(-h). No matter

which choice is made , If s(—h ) fj ~~ ‘ lim If s(ct) it , with equality only ifn Ct~ (-h )~Ps(-h ) = 0. Thus for g ~ 0 there can be ~t most one choice of a > -h such

• that (2.4) holds with s(Ct) Ii = iS. Although a can have any nonnegative

value if g = 0 and hn 
> 0~ a is uniquely determined if g = 0 with hn

< 0,

in which case (2 .4 )  can only hold with s(ct) = .5 if a = —ha
. This estab—

lishes the claims about the uniqueness of cz*.

Suppose now that (2.2) holds with a~ 
) -h and that either a~ 

= Q

and 115 *11 ~ .5 or else a* > 0 and II s *I I  = 6. If a~ > — h ,  i.e. if

H + al is positive definite, then s~ is uniquely determined by (2.2) and

is hence the minimizer of p on N. Assume therefore that ct* = — h .  Then (2.2)

uniquely determines s1 
for i < k and iir~1ie~ Pg = 0. Clearly

p ( s )  = .P (s *) for any choice of s having S . = s. for i < k and

• (II sit - .5)0* = 0. Since we have seen from (2.2) and the uniqueness of a~

(for g ~( 0) that any minimizer of ~ on N is such an s, s~ minimizes

.p on N. .

—7—
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3. (Near) Singularity in H + a*DTD

When g ~ 0 (as we henceforth assume), it is usually possible to compute

an approximate OLC step S as

(3.1) s s(Ct) — (H +

where a > 0 is chosen so that H +Ct D D is positive definite and II DS(ct lI
is near 6. Such a step s exactly minimizes .p (g iven by (1.1) ) on an approxi-

mation to the “trust region” N given by (1.2) If H + Ct*D D  is singular in

(2.1), however, then it may be impossible to compute a suitable s in this way ,

because it can happen that Ds(~) ~ 
is considerably less than .5 for all cx

that make H + cz DTD positive definite. And if H + a*D
T
D is nearly singular,

then computing a sufficiently large s(~
) may be impractical or at least unduly

costly. Of course, we could simply accept a “short” s(ct). But if H has a

significantly negative eigenvalue and is a good approximation to the current

true Hessian V 2.p*(x), then it ~ay prove well worthwhile to compute a step S

having a significant component in the direction of an eigenvector of H cor-

responding to the smallest eigenvalue. In what follows we describe a simple

way to compute such a step ~~~. This step approximately minimizes .p (to within

a prescribed tolerance) on the exact trust region N of (1.2).

To simplify the notation, we assume for the rest of this section that

D = I and H = diag(h
11...,h )  with 

h )  h
2 
)... )h , as in the proof of

Theorem 2.1. We also assume h ~ 0.n
When hn ~ 0 , the algorithm of § 4 maintains a lower bound ~ on accept-

able values of ~ such that ,
~ ~ — h .  If ~ > —h yields 

~( 
s(a ) 

~ 
< 6  , then

(3.2a)  fl~~~ _h~~~~Ct * 
~

It will be convenient to let

—8-

~~1 
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(3.2b)  8 = a — n

We may regard H + a*I as nearly singular if we encounter an a > —h for which

B is sufficiently small (in the sense made precise in Theorem 3.2 below) and

for which s( a)~ is unacceptably small , say

(3.3) IIs (c t ) i l  <

for some prescribed Bc (0,1), e.g. B = 0.75 or B = 0.9.

Suppose now that (3.3) holds, and let s = S(a) . For h
1
> h , we may

expect that s. s~ , while for h . h ,  we may expect g. 0. Thus it seems

reasonable to consider computing an approximate OLC step $ by finding an

approximate eigenvector v of H corresponding to h and adding a suitable

multiple of v to S. Because of (3.2), H + I has an eigenvalue h + a with

0 ~ h + a a - = B (and eigenvectors corresponding to this eigexivalue are
n

• also eiqenvectors of H correspondIng to h). We probably have a factorizatlon

of H + ~I, so for K > 1 (e.g. K 2), it should be easy to compute v c ff~
fl

by the inverse power~method such that

(3.4a) l i v  II = 1 and

(3.4b) (H + c.I)v ~ K B

Given such a v, we may compute

(3.5a) s = s + cv

with a chosen so that Il~ Il = .5 and ~(~ ) is minimized. Specific ~-y~

Lemma 3.1: If i~(r) .p(s + tv), and if

(3.5b) a = ~~2 - 11 5 11 2 ;/(sTv + sj gfl (STV) / (STV) 2 
+ ~2 - Ji sU 2 I



(with sign (sTv) = 1 or -l if 5
T
~ = 0), then i = a minimizes ~(T) subject

to the constraint s + iv = 6.

Proof: There are two values of T for which 5 + TV 6 , namely

(3.6a) T~ = 
T 

+ / (sTv) 2 
+ 62 — s~ j 

2 and

(3.6b) T = 5
T
~ — ,[7T )

2 
~ 
2 

— I t s  ~ 
2~

Because of (1.1) and (3.1),

T T 1 2 T
= p(s) +Tg V +Ts Hv + ~- T V Hv

= ip(s) +t[g + (H +ctl)s]
T
v _ Tas

T
v + ~~

- T V H V

T 1 2 T
= p(s) - tas V + ~~

- T ~ Hv.

Using (3.6) and (3.4a) , we find

— ~4 ( i ) = —( T
+
— T) 

T 
+ ~ (T+— T_ ) (T + 

+ T)V HV

T T
= -(T

÷ 
- T )  (s v) (a + v Hv)

= —2 / (sTv)2 + .5
2 

— sff~~
’ 

(s
T
V)v

T
(H + C L  I)v.

~~it H + ctl is positive def in ite, so V
T
(H +~~ I)v > 0 and 1~(T)~~ > iji(T) if

• T • T T / T 2  2 2’
m u  ‘nly if 5 V < 0. Thus the choice T = —s v + sign(s v)-i (5 v) +c5 — ii sf~

mir unizes ~ subject to s + TV = 6. which is equivalent to T a with a

given by (3.5b) .

We now consider how to tell whether the B of (3.2) is small enough that

h~ relative difference between ~ (s*) and ip (s) is small , i.e., that

-10—



-~~~~~ • - -- ------ -.•- •—-~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(3.7) e~
( )  ~~,(s*) — ~(~ ) ~

for some prescribed e c (0,1), e.g. e = 0.1. To this end , it is convenient to

define s : [a *, oo) +]R5 by

s.(t) —g./(h. + r )  if i < n;

(3.8) .(r) =

• / 2 r 2’
— sign(g)~ ’6 — L s.(t) & f i = n .

j<n :;

In the event that h . = h for some i < n , we assume without losing generality

that g. = s~ = 0 and interpret (3.8) as specifying s.(a*) = 0. If g = 0,

then we assume that sign(g ) = _s ign(s *) in (3.8) . Thus, in all cases s is

a smooth function with ~ (a *) = s~ and E .5

To bound ip(s) - p (s* ) ,  we shall first bound p(s(a)) - p (s*), then bound

— 
~(s(.x)). To bound ~

(
~
) — w(s*), it is convenient to define 4’ :[a*,co)+ R

by

‘PCI) : ~ (s(r) ) 
— gs(t )

2 2 2
I 

—g h .g. 1 1 2  ~ 11= ~
‘ + + — h , â — L

‘. h , + ’t 2 2 n’. 2
1 2 (h .+T )  i< n (h . +1)

1. 1

= ~~
- h 6 ~ - ) g~~(2 r  + h . + h ) / (h . +1)

2
.

Note that 4’’(t) = ~ g~ (h +t)/(h + T ) ~~ ~~ ~ ~*2 (h +t)/(h . + t)~~ ~ ~~2 ~ 6
2

i<n .i<n i<n

Since a — a~ ~~B by (3.2), we thus find

- a

-11-
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(3.10) 4’(a) — 4’(a*) ~ 9.5
2

Now (3.2) and (3.3) imply

(3.11) I~~I ~~ (Ii + a) It s II ‘
~~ 9~~6, •

while (3.8) implies I5n(~1*) — ~~ 6 . Together with (3.9) and (3.10), these

yield -

(3.12) ~(s (s)) 
— ~‘(s*) = ~g~~g ) — 4~( *) — 9n n ~~

*) —

~ (1 +8)962

Now we deduce a bound on ~ (~ ) - p(~~~~
(a)). For brevity, denote ~(a) by ~

Then (1.1) gives

( 3 . 1 3 )  p(s) —~ (s(a)) 
= g

T
(~ — ~) + I ~T[~ — I ~

T
H~

To derive a convenient expression for ~~~~ it is useful to let

(3.14) f (H + ctl)v,

so that Hv = f - av. Note from (3.4b) that

(3.15) II f II ‘~ ~°

• Since S = S + civ and II s~ = 6, we have a
2 

+ 2as
Tv = 62 - II s~

2 
and

T 2 T T 2 T T T
sH s = s H s + a v H v + 2os H v = s l i s + a  ( v f— c t )  + 2ci (Sf Ct5 V)

— a[62 — 
~ sfl

2 ] + a(av + 25)
Tf~

Similarly, we have s = s + ae, where en = (0,... ,0,1)
T is the n-th standard

unit vector of and a is chosen so that ~ 
= .5 (with sign(~~) = sign(s~)),

and we find

—12—

~ -~



r — 
_ _ _ _  

—
~~~~~~~~~~ ~----- ~~~-

(3.10) 4 ’(a) — *(a*) ~ 9.5
2

Now (3.2) and (3.3) imply

(3.11) J g J ~~ 
(h

n + a) 
~I 

s it ‘
~~ 986,

while (3.8) implies is (IZ*) — 

~n~~~’ 
‘~~ .5 Together with (3.9) and (3.10), these

yield

(3.12) ~(s ( i t ) )  — p (s*) = 4 ’(a) — 4’(a*) — g [~~ (a*) —

~ (1. +~ ) 9s5~

Now we deduce a bound on ~ (~ ) - ~(~(c~)). For brevity, denote ~(c*) by s

Then (1.1) gives

• (3.13) .p(
~) — .p(s(a) ) = gT(~ — ~) + I ~~~ — I ~TH~

To derive a convenient expression for ~~~~ it is useful to let

(3.14) f = (H + aI)v,

so that Hv = f - czv. Note from (3.4b) that

( 3 . 1 5 )  II f i t  ~ KB

• Since s = s + civ and s~ = iS , we have a2 
+ 

T 
= .5

2 
— II s~

2 and

T 2 T T 2 T  T T
SHS = S Hs + a vHv + 2as NV 5 lis + ci (v f — ci) + 2a(s f - as v)

S
THS — a(6 2 

— II sll 2 ] + a (aV + 25]
Tf

Similarly, we have s s + ;e , where e = (0, . . .  ,0 , 1)
T is the n-th standard

unit vector of and is chosen so that = .5 (with sign( ) = sign(s )),

and we- find

_ _ 
~~~~~~~ -



~~Hs — 
TN + h (6 

2 
— II 112 1

Together with (3.13), these equations imply

~ (~~) — 
~(~ (a)) = gT(j - ~) — 4 (a + h )  (6

2 
- 11 5 11 2 ) + 4 o(ci v +

~ g
T~q~;, - ~i e )  + 4a (av + 2S) Tf

T T TNow (3.1) and (3.14) give g v = -s (H + a I )v  = -s f, and the definltions of ~

and a imply lo u ~ .5 and ~ 5, so (3.3), (3.4a), (3 .11) , and (3.15)

combine with the above inequality to give .p(~
) — ~~ (~~ (a) ) ~~ 86~ K 8 + 886

2 + 4 6(6+2B6)KB
‘
~~ [ 8 ( 2 K  + 1) + 4 K 186 2

Combining this with (3.12) and Theorem 2.1, we finally obtain

• (3.16) 0 (~p(~) — p (s*)< [2 8 ( K + 1) + 4 K + 1196 2
.

This leads to

Theorem 3.2: Let Bc (0 ,1 ) ,  € c(O,l), and ice (1,w)  be given and suppose g ~ 0

and that a ~‘ 0 renders H + al positive definite. If the s of (3.1) satisfies

(3.3) and the 8 of (3 .2 )  satisfies

(3 .17 )  8 ~ C C2 ( a uI s 11 2 
- gTs ) / [4 8 ( K  + 1) + K + 21 ,

and if s is determined by (3.5), where v satisfies (3.4), then (3.7) holds.

Proof: From (1.1) and (3.1) we have

= gT~ + 4 s~~~i~ + a I)s — 4 d I s h 2
• T 1 !~ 1 2

= g s -  ~- g s -  ~- a  S

• 1 ‘
~
‘ 2

= j(g s — a hi s hi ) .

—13—
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Together with (3.16), (3.17), and the fact that iP(s) < 0, this implies

c~ (s) ~~~(s*) — p (s). But Lemma 3.1 implies up (s) cup(s), so (3.7) follows.•

—14—
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4. Choosing cc

If either H is indefinite or the Newton step s~~~ = —H 1g is too large,

then computing an OLC step 5* requires finding a solution a* to the scalar

nonlinear equation D(H + ~~~~~~~~~~~~ = .5 . There are many iterations for approx-

imating such an a~ -—see Gander ’s excellent discussion in §6 of [Gan781 . In

view of the fast convergence reported by More [Mor78], we prefer to use an itera—

tion proposed by Reinsch [Rei7l) and independently by Hebden [Heb73], together

with Mor~ ’s (modification of Hebden’s) safeguarding scheme. Let

(4.1) 4’(a) : IID(H + ~~TD)~~ g~~~1 — 6
1

The basic iteration is Newton ’s method applied to 4’. Thus if iterate renders

H + cz.~D~D positive definite but yields an unacceptable step, then we compute a

tentative value ~~~~ = cc.x — 4’(c&K)/’P’(ak
) for d k+l~ 

i.e.

(4.2a) k+ 1 = d k + 11 D511 2 ( l i Ds hl _.5)/[.55
T
D
TD( H + a D TD) 1

D
T
DS],

where

(4.2b) s = s(a
k
) = —(H + cc~ D

TD) 1
g

We also maintain lower and upper bounds and u
k 

on a~ and , if H is not

positive definite , a value > 0 such that is an upper bound on the smallest

eigenvalue of D
THD 1 

. (For convenience, we set il
k 

= —l if H is positive

definite.) We discuss below how these quantities are updated . Once 
~k+l and

u
k+l 

have been determined , we obtain a safeguarded cik+l from the rule

k+l ~~ i
k+l ~ k+1< Uk+l and 

~k+l > 

~k+ 1

CLk+l 
=

max { l0~~ uk+l~ 
(
~k+l

uk+l
)1”2 } otherwise.

- 

-15- 
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Again assume variables have been changed so that D = I. To solve

linear systems involving H + c*k
Is e.g. to compute s(a

k
) in (3.1), we recom-

mend attempting to compute the Cholesky (or LDLT) decomposition of H +

(see e.g. §3.3 of [Ste73]). If this works, then we may regard H + cikl as

numerically positive definite (provided the Cholesky factor has no zeros on

the diagonal). Otherwise for some & between 1 and n we may express the

leading principal I x I submatrix of H + d
kl as LMLT, where L is a

lower triangular matrix with nonzero diagonal and M is the diagonal matrix

diag(l, 1,..., 1, ii) . Both L and ~ are readily available as a byproduct

of the attempted factorization, and ~i ~ 0. We compute z = L
T
e1 (i.e.,

T T I T rz
solve Lz = e1), where e1 

= (0, 0,..., 0,1,) ER . Then (
~~~) (H + ct

k
I)
~~
O

= ~
T
u~~

T
~ = e~Me1 

= U , so U/~I z 11 2 
is a Raleigh quotient for H + Ci

k
I
~ 

and

(U/It zII 2 ) - ci
k ~~

0 is an upper bound on the smallest eigenvalue of H. Hence

we set

(4.4a) 
~k+l 

= 1
k+l 

= U
k 

— U/Il z(I 2 and

(4.4b) Uk+l 
= U

k

and choose ci = Ci (which will force a safeguarded choice of C&
k+l 

in (4.3)).

If H + U
k
I is positive definite then the concavity of U’ [Rei7lJ implies

that the Newton iterate given by (4.2) satisfies lX
k+l ~ a*. In this case

we recommend using the following variation on Mor ’s update prescription for

and u.~: if *(ct.
~
) < 0, then choose

(4.5a ) 1k+l 
= 

~k+1 
and

(4.5b) U
k+1 

U
k

-16-
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Otherwise choose

(4.6a) £k+l 
= max{tk~ ctk+l

} and

(4.6b) 
%+i. 

=

In both cases, let 
~k+l 

=

To obtain the initial bounds £ j and u
1
, we obtain lower and upper bounds

EMIN and EI4AX on the eigenvalues of H from the Gerschgorin circle theorem (optimized

by the diagonal scaling technique described below), and we exploit the following

observation : the a~ of Theorem 2.1 is such that 6 = g~ /(A + a
*) for some

A between the smallest and largest eigenvalues of H. Thus

(II g~I/ 6) — EMAX ‘~~ a~ ‘~~ (~ ~l l /6) — EMIN , and we let

(4.7a) 
~l 

= ntax{L , 
~II g~ /6 

) —

(4.7b) u
1 

= (Ii gIl /6) — EMIN ,

where is given by whichever of (4.4a) or (4.5a) applies, with = £ -l 
= 0.

To compute EMIN and EMAX , we use a special case of the scaling by diagonal

matrices considered in [Var651 . Specifically, we find a diagonal matrix .0

having n-l diagonal entries of unity and one other positive diagonal entry such

that the Gerschgorin lower bound on the spectrum of is as large as pod~i-

• . 2ble, and we use this bound as EMIN. This is quickly done (in O(n ) operations)

as follows: Compute the off—diagonal row sums

(4.8a) aj 
—

and find k such that row k gives the minimum Gerschgorin lower bound :

(4.8b) H
kk 

— 

°k 
= min{ - 

ci
j  

I 1 ~ i ~ n)

.
• ‘

—17—
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For j ju’ k, let 9. denote the auxilliary quantity

(4.8c) B~ = (H
kk 

— ~~~ + o~ — IH jk i) / 2

and compute

(4.8d) EMIN = H
kk 

— max {9. + (8~ + o
kIH .k I) Ii ~ k}

EMAX is computed similarly: with a. as in (4.8a), find k such that

(4.9b) 
~5ck 

+ 0k 
= max{ H.. + a. 1 

~~ 
j ~ n}

For j  ~ k, let

(4.9c) 9~ 
= (H~~ — Hkk 

+ 0j — l 1hj k l ) / ’2

and compute

(4.9d) EMAX = H
kk + max { 9~ + + a~t H ik i )

l/2 
~ ~ 

k }

We begin the quest for ci* by trying a = 0. If this proves unsatisfac-

tory, then we compute and u
1 

by (4.7-9). If acceptable values ~
(Prev)

and 6
(prev) 

of cc and uS from a previously computed OLC step are available,

~~ we obtain from a rule which , according to J. E. Dennis [private com-

mun ication],  J.J. More has found helpful:

(4.10) = 6 (prev) (prey)
,,6

~~ ~(P~~1f) and 6(prev) are unavailable, then we simply set a1 
= 0.

To prevent excessive iterations, we deem the step s = computed from

~. acceptable if B u S ~ y uS for some specified Bc (O,l) and yc (l,oo).

~~ebden [Heb73] and More (Mor78] choose B = 0.9 and y = 1.1. In connection

r with an algorithm like that of NL2SOL [DenGW79] , where . 5 /J~ 

(prey
11 or 6,,6

(Prev)

4 -18-
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either equals unity or two or lies in [0.1, 0.5], Dennis and Schnabel suggest

B = 0.75 and y = 1.5 [DenS79] . Our computational experience with NL2SOL

slightly favors the former choice.)

In practice, D is usually a diagonal matrix, so the explicit change of

variables (1.3) is easily performed , and we recommend actually performing it

when H is given explicitly. When H has the form JTJ, g has the form j
T
r,

and .3 and r are given explicitly, on the other hand, we prefer the technique

-. J
advocated by More [Mor78], i.e., using a QR factorization of[ 1/2] to corn-aD

pute S.

The statement of Algorithm 4.1 below involves fewer tildas if the notation

of (1.3) is reversed , so that the given assignment is finding s~ to minimize

up( s) : ~~~ + I ~~~ When H is given explicitly and g ~ 0, the method des-

cribed above for computing a reasonable approximation ~ to g * may be sum-

marized as follows:

Algorithm 4.1:

Compute H = D
THD 1 and g D T

g

If H is positive definite , then:

(N) —lCompute the Newton step s = -H g.

If II~~~II ‘~~ yiS, then halt and return s = D
1
s~

t
~~.

Set = -1 and determine 9. from (4.5) with a
1 1 —l 

0.

Else [H not positive definite] Compute n0 and 9. from (4.4)

with a
1 

= 

~~l 
= 0 and set 

~

Compute EMLN and EMAX by (4.8) and (4.9), and compute 9.~ 
and u1

from (4.7).

If and 6
(prev) 

are available, compute a1 from (4.10); other—

let cc
1

O.

Compute from (4.3).

—19—
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For k = 1, 2,

If H +ci
k
l is positive definite, then

Set 
~k+1 

= 

~k and compute 5
(k) 

= -(H + a~ I) 1
g.

If 86 ~ ~ S 
(k) 

~ yuS , then halt and return S = D 1s~~~~.

Compute 
~k+l 

from (4.2) with D : I.

If (k) 86 , then

If 0 and 8 = c~ 
— n~ satisfies

(3.17) with s = 
(k) 

then

• Compute v satisfying (3.4).

Compute ~ from (3.5).

Halt and return = D 1
~ .

Compute 9.
k+1 and U

k+l 
from (4.6).

Else [II 
(k)

11 > y6 I compute 9.k+l and 
Uk+l from (4.5).

Else [H + UkI not positive definite] set cck+l 
= Uk

and compute 
~k+l ’ 

9.k-f 1’ Uk+l 
from (4.4).

Determine czk+l from (4.3).

After an OLC step has been computed , it is often necessary to compute

another OLC step from the sante g and H with a new value of 6. To handle

this situation, it is worthwhile to modify the initial part of Algorithm 4.1

to take advantage of the extra information that is available. For example,

if .5 has been increased , then u
1 can be set to the minimum of the value

given by (4.7b) and the last value of Uk~ 
while if 6 has been

decreased, 9~ can be set to the maximum of the value given by (4.7a) and the

last value 9.
(old) 

of In either case, can be set to ~(old) and

can be computed from (4.2) with = ~
(old)

-- a

—20—
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5. Numerical Experience with NL2SOL

For use in NL2SOL (DenGW79] , we have implemented two versions of

Algorithm 4.1: GQTSTP is designed for use with a general H, while LMSTEP

deals explicitly with J (or its QR decomposition) when H has the form

g has the form jTr and J is a rectangular matrix with at least

as many rows as columns. Both codes make special provision for the cass

in which an OLC step is to be recomputed with a new 6 but the same g

and H. To handle D , which both codes assume to be a diagonal matrix,

GQTSTP explicitly changes variables, whereas LMSTEP follows the procedure

recommended by Mor~ (Mor781

The way these codes deal with (near) singularity in H + cc*D
T
D

deserves some further discussion. Both detect this case by test (3.17).

In the case of LMSTEP and true singularity in H + cc D D, we would have

= 0 and H positive semidefinite, and any v in the null space of H

would be orthogonal to g, whence up (s + v) = up(s) . LMSTEP therefore returns

without modification a step s for which (3.3) and (3.17) hold. GQTSTP

similarly avoids replacing $ by s = $ +Ov in cases where up(s) and

up (S ) would not differ significantly. Specifically , if up(s) — p (~~~ ) <  -(e/3),~(s) ,

then GQTSTP returns s rather than ~~~. To assure that (3.7) holds in this

case , GQTSTP uses (3.17) with e replaced by 2€/3.

LMSTEP and GQTSTP depart slightly from Algorithm 4.1 in the calcula—

- tion of Uk+1 and 9.k+l~ 
They use Uk+1 

= 5k+l 
if tk+1< ctk+l 

< uk+l

in place of the first part of (4.3), = 9.k 
in place of (4.6a), and

k+l ~~~k 
— *(ctk)/4” (cik)in place of (4.5a), where ~‘(a) = D O-I + aDTD~~~ Il -6

• This gives a worse bound than the one derived from the 4’ of (4.1). J. J~

—21—
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More [pr ivate communication] poin ted out the superiori ty of the latter , but

budgetary and time constraints kept us from incorporating it into LMSTEP and

GQTSTP .

Table I gives some statistics on the performance of LMSTEP and GQTSTP

when NL2SOL is run on the problem set described in [DenGW79]. (The

statistics were gathered on the Univa c 1110 computer at the University of

Wisconsin using a preliminary double-precision version of NL2SOL with

V(VCQNCR) = 0 and other input values at their defaults , with the exceptions

• described in §7 of [DenGW79].) The column headed “No. of Steps” gives the

total number of non-Newton steps computed and the column headed “% of Total”

tells what percentage these were of all the steps computed by the module in

question. The average value of k when Algorithm 4.1 halted (averaged

over the non—Newton steps) appears in the column labelled “k mean ,” and the

maximum such value appears under ‘k max” . In the columns headed “Special Case” are

th~ percentage of non-Newton steps in which (near) singularity in H + cc
*D
T
D

was detected and the mean and maximum final values of k for these steps.

It is fortunate that the mean values of k are so low. Had they

been much greater than two in the case of LMSTEP or four in the case of GQTSTP ,

t1~~n it would have been possible to save some time in these modules by pre-

processing the input matrices to a sparser form : by reducing .3 to bidiagonal

form in LMSTEP or reducing D
1HD 1 

to tridiagonal form in GQTSTP (see §~ 7.5 and

7.~ of [Ste73] and the references cited therein).

After all the effort spent in studying the special case , it is some—

wha t- disappointing to see that GQTSTP never detected this case. It will be

interesting to see how often GQTSTP detects it when us ed in solving other

kinds of optimization problems . On the other hand , detecting the special

— 2 2 —
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case appears worthwhile in LMSTEP: the mean k values at which it was detected

are much lower than the limit on k that would have to have been imposed and

- reached in the absence of checking for the special case.

IT ’ 
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All (Non-Newton) OLC Steps Special Case

No. of %of k k %of k k
Module B Steps Total mean max OW mean max

UISTEP 0.9 1.1 871 74.7 1.54 5 4.1 1.42 3

LMSTEP 0.75 1.5 1032 77.3 1.30 4 2.0 1.67 3 -

GQTSTP 0.9 1.1 283 61.4 1.95 11 0 —- ——

GQTSTP 0.75 1.5 232 54.2 1.91 9 0 —— ——

Table I: Statistics from NL2SOL test problems

Acknowledgement. I thank Jorge J. More for a helpful discussion on some
of the material in §4.
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